10385

B.Sc. Semester I (Honours) Examination, 2019 ELECTRONICS

Course ID : 11711

Course Title : Basic Circuit Theory and Network Analysis

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer *any three* of the following:
 - (a) State one limitation of Ohm's law.
 - (b) Draw V-I characteristics of an ideal voltage source.
 - (c) What is 'node' of a circuit?
 - (d) What is the equivalent capacitance when several capacitances $C_1, C_2, C_3, ..., C_n$ are connected in series?
 - (e) Draw the symbolic representations of a DC voltage source and a DC current source.
 - (f) A voltage source has internal impedance $(4 + j5)\Omega$. Find the load impedance for maximum power transfer.
- 2. Answer *any three* of the following:
 - (a) What do you mean by dependent and independent sources?
 - (b) What are active and passive circuit elements? Give examples of each.
 - (c) States Kirchoff's Voltage Law (KVL) and Kirchoff' Current Law (KCL).
 - (d) Distinguish between 'mesh' and 'loop' of an electric circuit.
 - (e) In a series RLC circuit, if the value of L and C are 100μ H and 0.1μ F respectively, find the resonant frequency in Hz.
 - (f) What is an alternating current? What is period?

3.	Answer any two of the following:	

(a) Transform the T(star) network to π (Delta) network.

(b) State and prove Thevenin's theorem for dc network.

2+3=5

 $5 \times 2 = 10$

5

SH-I/Electronics-101C-1(T)/19

Course Code : SHELC-101C-1(T)

$1 \times 3 = 3$

 $2 \times 3 = 6$

Full Marks: 25

SH-I/Electronics-101C-1(T)/19 (2)

- (c) An alternating e.m.f. is applied to a pure inductor and a pure capacitor. Investigate the phase relationship of the alternating current with the alternating e.m.f. in each case. What do you mean by wattles current?
- (d) For the circuit shown below, find the currents in each branch by nodal method.

- 4. Answer *any one* of the following:
 - (a) What is two-port network? Find the h-parameters of the two-port network shown below.

 $1 - \frac{2\alpha}{2} - \frac{3\alpha}{2} - \frac{2}{3}$

- (b) A constant e.m.f. E is applied to a circuit containing a resistor R and a capacitor C in series. Deduce an expression for the charge on the capacitor as a function of time. Define time constant of an RC circuit. 4+2=6
- (c) State Maximum Power Transfer theorem. Find the value of R_L for the circuit shown below so that maximum power is transferred to R_L from battery and hence find the amount of maximum power transferred. 2+2+2=6

6×1=6

2+4=6

	ELECTRO	NICS
Course ID : 11712		Course Code : SHELC-102C-2(T)
	Course Title : Mathematics For	undation for Electronics
Time: 1 Hour 15 Minutes		Full Marks: 25
	The figures in the margin i	ndicate full marks.
	Candidates are required to give their as far as pract	answers in their own words icable.
1.	Answer any three of the following:	1×3=3
	(a) What do you mean by differential equation?	
	(b) Give one example of partial differential equat	ion of 2nd order.
	(c) What is 'order' and 'degree' of a differential	equation?
	(d) What is a 'singular' point?	
	(e) What is recurrence relation?	
	(f) Give the definition of Gamma function (Γ).	
2.	Answer any three of the following:	2×3=6
	(a) What is the 'ordinary' point?	2
	(b) What is the origin of 'indicial' equation?	2
	(c) What is the relation between Beta and Gamm	a functions?
	Show that: $\Gamma(n + 1) = n\Gamma(n) = n!$	1+1=2
	(d) $\beta(m+1,n) = \frac{m}{m+n} \cdot \beta(m,n)$ — Prove this for	rom the definition. 2
	(e) What is an analytic function?	2
	(f) Give one example of row matrix and column	matrix. 1+1=2
3.	Answer any two of the following:	5×2=10
	(a) Solve one dimensional heat flow equation:	
	$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ by separation of variables method	1.
	(b) Show that the polar forms of Cauchy-Rieman	n (C-R) equation are

B.Sc. Semester I (Honours) Examination, 2019

10386

Please Turn Over

SH-I/Electronics-102C-2(T)/19

С

SH-I/Electronics-102C-2(T)/19

(c) Construct the recurrence rotation by solving given differential equation, by power series method:

$$(1 - x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$$

- (d) Find the eigenvalues and eigenvectors of the matrix $\begin{pmatrix} 5 & 4 \\ 1 & 2 \end{pmatrix}$.
 - Or,

(2)

Obtain the indicial equation for the given Bessel's equation of order 'n'.

$$x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0$$

- 4. Answer *any one* of the following questions:
 - (a) Find the value of $\Gamma(\frac{1}{2})$ and hence plot the graph of Gamma function for $n = -\infty$ to $+\infty$ (i.e for whole range.) 3+3=6
 - (b) What is Argand's diagram? Draw the Argand diagram for a complex number. State Residue Theorem. What are the various methods of calculation of Residue? (1+2)+(1+2)=6
 - (c) Find the diagonal form of matrix

$$A = \begin{pmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$$
 0r,

Evaluate the given integral using residue theorem

$$I = \int_c \frac{4-3z}{z(z-1)(z-2)} dz$$

where *C* is a circle with $|Z| = \frac{3}{2}$.

6

6×1=6